

NIA / NASA 2023 RASC-AL Forum | June 2023

Pale Red Dot

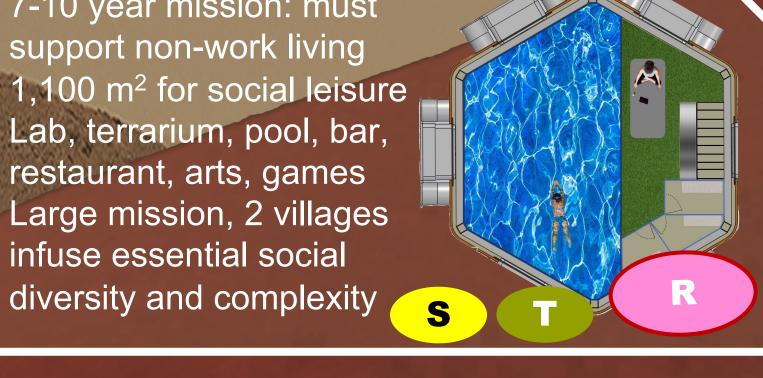
Polis-based Architecture for the Long-term Exploration of the Red planet, with Exciting and Diverse Developmental Opportunities to Thrive

Massachusetts Institute of Technology

Landing site selection, Technology demos, Cargo delivery, Crew Starship return demo.

EARTH-INDEPENDENCE ESTABLISHING MISSION

(2040 - 2050): TWO VILLAGES WITH 36 CREW

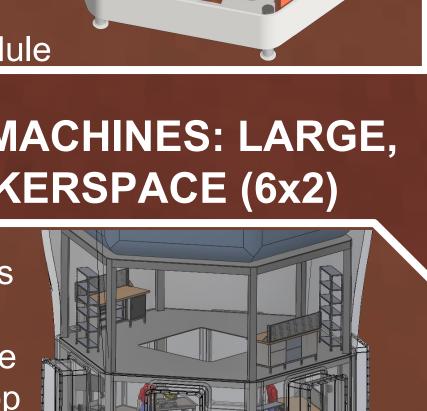

CARE FACILITY (1x2)

LEVEL V MEDICAL

- √ 6 medical specializations
- ✓ Incl. psychosocial care
- Doctor on call, pharmacy
- **Emergency Department**
- Surgery and ICU
- Exam room & imaging
- Quarantine facilities Second hospital in other
- village for concurrent ops

THRIVING, NOT JUST SURVIVING

- √ 7-10 year mission: must support non-work living
- √ 1,100 m² for social leisure
- Lab, terrarium, pool, bar,
- restaurant, arts, games Large mission, 2 villages infuse essential social



MACHINES PROTECT HUMANS: DUAL-**MODE LIFE SUPPORT SYSTEMS (31x2)**

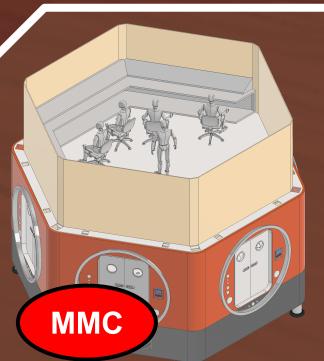
- ✓ Similar redundancy (31) ✓ Dissimilar redundancy: open + closed loop ECLS, 2 physico-chem sources
- for O₂, N₂, CO₂ ✓ Water tanks for radiation protection, H2O, thermal
- ✓ All waste pyrolyzed, sterilized in offsite module

HUMANS PROTECT MACHINES: LARGE, FLEXIBLE MARS MAKERSPACE (6x2)

- ~1,000m² makerspaces √ 5-axis CNC, metal and plastic AM, full machine shop & electronics shop
- ✓ Feedstock production
- Parts fabrication
- Integration, assembly
- Low-level repairs of all types + growth

Total Mass	5,828 MT					
Power demand / available	15.9 MWe / 30 MWe					
Pressurized Volume	15,963 m ³ + 21,408 m ³ tunnels					
Lifecycle Cost	\$81.2 billion (incl. 30% margin)					
# launches	81 + refueling					
Crew and duration	36 crew for 10 years					

LARGE, PRIVATE, QUIET BEDROOMS WITH SPACE FOR GUESTS (18x2)


- ✓ Radiation shield from 3m water tanks directly above
- 10 m² of private space Full queen bed and sofa
- Desk and chair, TV screen
- No traffic by the door Spaces below offer leisure
- facilities: games, music, private video messaging

FARM MODULES SIZED FOR 200% OF DAILY FOOD REQUIREMENT (10x2)

- ✓ ISS heritage hydroponics
- 1,600 m² of growing area
- Using highly manufacturable farm systems
- Provides plant, aquatic and poultry products
- ✓ Seeds budget included
- Nutrient recycling using aquaponics and pyrolysis

HUMANS ON THE LOOP: MARS MISSION CONTROL (1x2)

- ✓ Mars Mission Control (MMC) in each village
- The two villages alternate between prime and backup
- High-bandwidth comms
- Can teleoperate any asset
- on Mars surface or in orbit

✓ Training and simulations

SAFE, VALUABLE AND SUSTAINABLE APPROACH

Selected two villages of 18 crew each as best combination of safety, value ✓ Four Mission-value full-time equivalent (MVFTE) for surface exploration

- ✓ Radiation dose 528 mSv, 48 hour workweek, cost \$290m per MVFTE per yr
- ✓ Capacity to expand habitat: construct tunnels, make new habitat systems

Capacity to CAP
Villages x Crew per Village
Workweek [hrs]
Year 10 Hab Volume [m3/crew]
Mobile MVFTE
In-habitat MVFTE
Unutilized MVFTE
Mission duration [years]
Radiation dose [mSv]
Non-value crew time liens
Manufacturability %
In-situ food %
+ Carrying Capacity p.a. [crew]
5T resuppply constraint
Number of Launches
Lifecycle cost [\$m]

								11000		
llages x Crew per Village	<u>1 x 4</u>	1 x 6	1 x 9	1 x 12	2 x 12	2 x 15	2 x 18	2 x 21	3 x 18	3 x 21
Workweek [hrs]	83.9	67.7	64.5	61.6	53.7	53.5	48.0	40.5	37.6	29.6
ar 10 Hab Volume [m3/crew]	374	291	277	312	906	927	955	927	983	975
Mobile MVFTE	0.0	0.0	0.0	0.0	3.3	3.9	4.0	4.3	4.5	4.4
In-habitat MVFTE	0.9	2.2	4.2	6.3	9.6	13.4	13.1	13.3	12.9	11.4
Unutilized MVFTE	0.0	0.0	0.0	0.0	1.9	3.7	10.8	21.9	35.0	56.3
Mission duration [years]	7	7	7	7	7	7	10	10	10	10
Radiation dose [mSv]	653	682	679	682	565	563	529	498	503	465
Non-value crew time liens	94.8%	91.5%	88.9%	87.4%	85.3%	83.4%	81.5%	77.6%	76.9%	72.7%
Manufacturability %	15%	30%	50%	75%	90%	90%	90%	90%	90%	90%
In-situ food %	4.5%	18.8%	18.8%	50.0%	50.0%	100.0%	100.0%	100.0%	100.0%	100.0%
arrying Capacity p.a. [crew]	0	0	0	0	0	47	36	30	8	0
5T resuppply constraint	84%	95%	121%	102%	179%	97%	99%	98%	98%	101%
Number of Launches	234	238	256	319	526	589	773	809	1088	1200
Lifecycle cost [\$m]	\$33,893	\$34,283	\$37,358	\$42,150	\$59,265	\$67,283	\$81,148	\$84,024	\$111,135	\$119,965
Cost per MVFTE p.a. [\$m]	\$5,593	\$2,277	\$1,277	\$949	\$571	\$459	\$290	\$213	\$213	\$166
Peak annual cost [\$m]	\$2,488	\$2,522	\$2,769	\$3,227	\$4,826	\$5,508	\$6,639	\$6,907	\$9,181	\$10,016
				1000000						

CONCEPT: LARGE MISSION, DIVERSE CAPABILITIES TO MEET NASA NEEDS

All other things equal, a large mission offers:

- Capability to manufacture systems from ISRU
- Economies of scale with respect to crew time
- Productivity gains from crew specialization
- More international and commercial partners More science, exploration & mission value time
- Diversity of crew and genuine social life on Mars
- Capability to build, outfit radiation-proof habitats

Cost benefits of large vs small missions:

- Amortizes DDT&E of 30 types over 503 units
- Lower costs per mission-value person on Mars

MULTI-LAYERED STRATEGY TO MITIGATE SYSTEMS FAILURES

M

M

First line of defense – high redundancy

- ✓ Similar redundancy in modular systems
- Dissimilar redundancy in critical functions Energy-rich, water-rich, food-rich, air-rich, time-rich
- Second line of defense high commonality
- ✓ Subsystem- and part- level commonality for easier maintenance logistics, tactical cannibalization Third line of defense – high manufacturability
- ✓ High manufacturability of all systems plus free crew time to support any repair & within resupply limit **Last line of defense – 'blast radius reduction':**
- ✓ Farm airflows set to minimize cross-contamination Villages can rescue each other in case of disaster

L-R, top to bottom, Team lead: Madelyn HOYING. Lead designer: George LORDOS. Team members: Yousif ALSADAH, Liliana ARIAS, Ignacio ARZUAGA GARCIA, John BEILSTEIN, Wing Lam CHAN, Ezra EYRE, Dane GLEASON, Divya KRISHNAN, Yuying LIN, Estelle MARTIN, Lanie MCKINNEY, Duncan MILLER, Cormac O'NEILL, Omar OROZCO, Palak PATEL, Elizabeth ROMERO, Francisco SEPULVEDA, David VILLEGAS, Alisa WEBB. Lead Faculty Advisor: Dr. Jeffrey HOFFMAN. Co-advisors: Dr. Olivier DE WECK, Dr. Alexandros LORDOS, Chloe GENTGEN, Kir LATYSHEV. Not pictured: H AZZOUZ, Meltem IKINCI